A Software Architecture for Defining a Methodological
Approach to Develop Collaborative Applications

Mario Anzures-Garcial, Luz A. Sanchez-Galvez?, Miguel J. Hornos?,
Patricia Paderewski-Rodriguez?

1 Benemérita Universidad Auténoma de Puebla,
Facultad de Ciencias de la Computacion, Puebla,
Mexico

2 Universidad de Granada, Departamento de Lenguajes y Sistemas Informaticos,
E.T.S.1. Informatica y de Telecomunicacion, Granada,
Spain

{mario.anzures, sanchez.galvez}@correo.buap.mx, {mhornos,patricia}@ugr.es

Abstract. This paper presents a software architecture-based methodological
approach to develop collaborative applications. Today, the use of collaborative
applications has spread to various domains, as they facilitate communication,
collaboration, and coordination between several users. These applications
require mechanisms to support and model communication activities and
processing of information, vital in the dynamic nature to the group. In this
paper, the use of a software architecture is recommended to develop
collaborative applications. This architecture for specifying the structure and
behavior through the application, providing a shared meeting space to simplify
and agile the group work. Thus, it is possible to support dynamic group
structure. In addition, specification tables are proposed to simplify the
development of this kind of applications; since the developers to complete the
table are analyzing the necessary elements required to build an application, so
performing requirements analysis, design, and displayed as would the final
application. A case study to validate the software architecture is proposed.

Keywords: Methodological Approach, Software Architecture, Collaborative
Applications, Specification Tables, Group Work.

1 Introduction

The use of a software architecture allows us to have a global perspective of the
software applications, since it knows its components what do them and how are

pp. 9-20; rec. 2015-08-04; acc. 2015-10-12 9 Research in Computing Science 105 (2015)

Mario Anzures-Garcia, Luz A. Sdnchez-Galvez, Miguel J. Hornos, Patricia Paderewski-Rodriguez

related, as well as, the environment in which interacts these. This knowledge leads us
to identify and analyze the necessary components of the application to develop. In this
way, it is possible to get any application requirements. Therefore, it can be handled to
the development of collaborative applications, which provides a shared interface that
allows a group of people to achieve a common goal. Consequently, in this paper, a
collaborative application for managing the departmental tests is developed as a case
study to implement a software architecture.

The necessary elements to create a collaborative application are specified by this
model in four layers; which provide four essentials aspects: the group, the cornerstone
of the group work; the interaction to control and manage the shared objects to the
application and between different users of the group: the application presents several
views to visualize the interaction carried out by the group in the stages that
application contains; and the adaptation to adjust the application with respect to the
produced changes through group interaction.

In order to facilitate the development of the collaborative applications, this model
supplies specification tables, so it is possible to define which elements will have the
application of an intuitive manner, even this can be made by any inexperienced
person in this domain. Thus, this model can be used to specify requirements, to
outline the design and implementation.

These requirements identified in the table inform how the application elements will
be distributed and executed in each involved stage in this. In this paper, the table
elements are the base of the requirements analysis, since each they are part of the
application for managing the departmental tests, and therefore, these determine the
design and implementation of the same. Thus, the software architecture can be used
how a methodological approach to develop this type of applications. This approach is
made up by four parts: requirements specification, sketch creation, code production,
and application test.

The rest of the paper is organized as follows: Section 2 describes briefly the
collaborative applications; Section 3 explains the used software architecture, and the
derived specification table of the same; Section 4 presents the case study, in which
software architecture is implemented using a methodological approach for building a
collaborative application for managing the departmental tests. Section 5 outlines the
conclusions and future work.

2 Collaborative Applications

A collaborative application is a computer-based application that supports a group of
people to achieve a common goal and provides services to support the work of users
through a shared environment interface [1]. Collaborative applications provide the
shared workspace, where they will perform group work; therefore, it must provide the
communication, collaboration, and coordination of the users. Different terms to
denote the shared workspace have been used, such as conversations [2], local [3],
places [4], spaces [5], conferences [6, 7], and meetings [8, 9]. In general, all these
terms denote a group of individuals, geographically distributed, which share a
common interest to perform common tasks. In this paper the term session to denote
the shared workspace is used.

Research in Computing Science 105 (2015) 10

A Software Architecture for Defining a Methodologic Approach to Develop Collaborative ...

Collaborative applications provide a mechanism to control and manage sessions,
called session management, which allows you to define sessions via a user interface,
through which users establish a connection; that is, users to join, leave, invite
someone to, and exclude someone from a session. Generally, these mechanisms only
specify how the group work will be organized. However, it is important to support
and define different styles for group work. Thus, if the style imposed by the system is
accepted or unsuitable for group work, you should be changed to one that meets your
needs. For this reason, this model uses an ontology to model the session management
policies [10] that allows to support different styles of group work.

A variety of tools (such as Groupkit [11], ANTS [9], and SAGA [12]),
architectures (e.g., Clock [13], and Clover [14]), and methodologies (AMENITIES
[15], CIAM [16], and TOUCHE [17]), which allows to develop collaborative
applications. However, these do not specify the steps to develop this kind of
applications, and they are not flexible enough to adjust to the group changing needs.

3 Software Architecture

Software architecture is defined as the fundamental organization of a system,
embodied in its components, their relationships to each other, to the environment, and
the principles governing its design and evolution [18]. A variety of architectural
styles, can be identified in a software architecture. A style is each recognized generic
pattern in relation to systems group; of another manner, a style describes and provides
the basic property of an architecture, as well as; it establishes the limits for its
evolution. One example of architectural style is a layered style, which is organized
hierarchically, and it is characterized by a sense of development "bottom-up", so that
lower layers provide resources that are used by upper layers, according to their
particular needs. A layer is a software technique for structuring the software
architecture that can be used to reflect different abstraction levels in the architecture.

A layered style is ideal for supporting the development of collaborative
applications, since it leads to break down a complex problem into a set of smaller
problems and simpler to solve. Therefore, in this paper a layered software architecture
will be used to develop the distributed components of a management system for
departmental tests.

The layered software architecture (see Figure 1) has been derived from performed
analysis about: Task Analysis [19], Activity Theory [20], Coordination Theory [21],
Conceptual Model [22]; and Distributed Cognition [23]. These related works supply a
set of ideas and concepts to manage the group interaction of the collaborative
applications. Fundamentally, these studies consider four principal aspects in a
collaborative application: group, their interaction, the application itself, and its
adaptation. Therefore, the software architecture contains four layers: Group Layer,
Interaction Layer, Application Layer, and Adaptation Layer.

The first aspect is a key to the performance of the work carried out to achieve the
common goal. The group must present an organizational structure to support the
division of labour, which indicate the actions that the group members (users) should
make in relation to the established roles for each of them. This organization must be
governed by a police, which defines the roles (Role) that users can play. These roles

11 Research in Computing Science 105 (2015)

Mario Anzures-Garcia, Luz A. Sdnchez-Galvez, Miguel J. Hornos, Patricia Paderewski-Rodriguez

establish the set of rights/obligations (R/O) and status (St) of the user; whom can
execute tasks (T), which are comprised of Activities (A) that use the prevailing shared
resources (R).

The second aspect is elemental to provide the communication, coordination, and
collaboration between the users. Accordingly, it must establish the session (Ss), which
is the shared workspace where the interaction is carried out. Furthermore, it must
make available for the awareness group and group memory through a notification (Nt)
mechanism, which informs users of and registers every change in the shared resources
used in each activity. Finally, it must ensure the consistency of the resources being
shared, facilitating the manipulation of the users’ permissions, which are granted, in
accordance with established organizational structure, and a concurrency (Cc)
mechanism.

Pre-Adaptation 5 Adaptation Stage
ADAPTATION | ™siage
Adaptati -
(assion)—CagreemerD Tt “Fon)
APPLICATION Information Participant Context
LAYER Pha@ View View View
INTERACTION (gassion e > Concurrence)
LAYER
=
Group
GROUP Organizational User w
Structure Task
LAYER
m%w
Activity
Rigth/
Status Obligation

=

Fig. 1. Layered software architecture for building collaborative applications.

The third aspect allows us to show the generated information and interaction in the
collaborative application. This is presented in stages (they are defined as each of the
collaboration moments [22]) on views (which are user interfaces). Three views are
considered in this model: Information View (1V) that displays the user information,
Participant View (PV), exhibiting the changes in shared resources and, therefore,
provide group awareness, and Context View (CV) shows the group memory, i.e., the
change history of shared resources.

In the fourth aspect, the views are adjusted to produced changes by interaction
between users and of these with the own application. For doing this adaptation, a
detection process monitors the session, determining whether an activity requires to
carry out the adaptation. Only if it is an adaptable process, in a non-hierarchical
organizational style, an agreement process is executed, and a vote tool is used for
reaching a consensus on whether an adaptation process should be performed. When
an adaptation or adaptive process should be executed, an adaptation flow process and
one reparation —which returns each component to their previous state and notifies
users that adaptation cannot take place— will be executed.

Research in Computing Science 105 (2015) 12

A Software Architecture for Defining a Methodologic Approach to Develop Collaborative ...

The software architecture is mainly focused on the design and implementation of
software structures, abstractly defining components that perform a task, their
interfaces, and communication between them, in order to meet adequately functional
and non-functional requirements of an application. For this reason, this software
architecture facilitates the requirements' specification, which will do by a table; which
is based principally on the architectural model proposed here, MetaOntology [27], and
agile methodologies [28].

Specification Table allows us to: collect all the requirements and agile the design
of collaborative applications; reduce the learning curve in the process of creating of
this kind of applications, since it is only necessary to complete the table with elements
that are intuitive even for any inexperienced person in the domain CSCW; establish
how will be access control to application collaborative since these tables are classified
by stages, delineating the roles that can participate in each of visualize the
collaborative application, since it is possible to define which elements will have the
application user interfaces.

The table (see figure 2) contains the elements' specification of the Group Layer
(except the organizational structure of the group, policy and user); Interaction Layer,
Application Layer. With respect to Adaptation Layer, two columns only are set, one
to indicate whether "there or not adaptation” (TA), and another to describe "What is
this?” (W?).

4 Case Study

In the Autonomous University of Puebla (BUAP) have sought different ways to
improve or increase the quality of student learning, one of these mechanisms is the
realization of departmental tests. Which aim to homogenize the teaching of a subject,
i.e., that all teachers will cover the same percentage of the academic program. The
Faculty of Computer Science carries out departmental tests in different areas of
knowledge; however, a departmental test requires a shared workspace to that involved
teachers perform group work. For this reason, this paper proposes the development of
a collaborative application for managing departmental tests using a software
architecture. This application is intended to minimize the time and effort that engaged
teachers in the enforcement of departmental tests. Several actors involved in this type
of tests are considered: Manager (Mg —he/she is responsible to configure the
application, establishing who plays the other four roles, existing areas and what
subjects are part of these—); Area Coordinator (AC —he/she registers to EC, and
schedules the professors' meetings related with the same subject—); Test Coordinator
(TC —he/she organizes the completion of each test, requesting and agreeing the tests
number to make, dates and questions of these; then he/she posting the test and the
classroom where each Professor will apply it—); Professor (P —he/she proposes and
vote date in that the test will be performed, as well as the exercises that it will
contain—), and Student (Su — he/she consults date and classroom where the test will
make, as well as its scores of each subject—). In general, the five roles must register
to join at the session, which is provided by application user interfaces. The
collaborative application for managing the departmental tests presents four stages:
Application Configuration, Test Preparation, Test Elaborating, and Test Results.

13 Research in Computing Science 105 (2015)

Mario Anzures-Garcia, Luz A. Sdnchez-Galvez, Miguel J. Hornos, Patricia Paderewski-Rodriguez

Once it has been explained the case study, then it will prove a software
architecture-based methodological approach to develop collaborative applications.

4.1. A Software Architecture-based Methodological Approach

A methodological approach is proposed to simplify and agile the development of a
collaborative application. This approach derives of the software architecture
mentioned above, and consists in the following steps:

* To elaborate of the requirements specification.

- Specifying the elements of the Group Layer, for this, the ontological
model of the session management policies can be applied. However, for
some developers complete an ontology is difficult. For this reason, it is
convenient to use a specification table, in which these elements can be
laid.

- ldentifying the elements of the Interaction Layer, which must be listed in
the specification table.

- Recognizing the elements of the Application Layer, which must be
registered in the specification table.

- Determining the elements of the Adaptation Layer, which must be
enumerated in the specification table.

- Generate a unique specification table containing the elements
corresponding to the four layers of software architecture proposed here.

* To create a sketch of how the application would display.

- Organizing of the specification table by stages.

- Determining the user’s access control according to the roles that can
participate in each stage.

- Establishing the elements of each user interface, considering the
resources and users interact in it.

- Defining what and how data must be stored.

- Carrying out a schema of the user interfaces and stored data.

* To implement the collaborative application.

- Making the schema where will be data stored.

- Developing the necessary user interfaces.

- Building each of the web services required to implement the collaborative
application.

- Making the composition of these web services.

" To test of application.

- Performing the necessary proofs to deliver the required application.

Research in Computing Science 105 (2015) 14

A Software Architecture for Defining a Methodologic Approach to Develop Collaborative ...

Table 1. Requirements specification of the test preparation stage.

CROUP LAYER INTERACTION LAVER | APPLICATIONLAYER | AD4FTATION
Role St RO TASK ACTIVITY _RESOURCE| s Nt €| IV PV CV _STAGE | T Wo
Authenrication AC Awhensicarion geimgitodan Text box Mot shared N b A uorling
seadingdats Acept Button ¥ - ¥ sdding AC
X filling record Form . i Al) v
Registering TC Registering TC Mot shared nothing
FrEnag == sending dats Aceps Buon s % oy T adding CE
. choosing dta Coondinater UT v ‘- o uorling
AC 3 Elimmsting TC Removing TC Sctomne dots e By | S . - . -
Consulting TC Consulting TC choosmgduim - Coomimater UL |Nm shared N T M zefling
chowing dsm Acept Bumon % oy T showing dsta
Modifying TC Modifying TC choosingdia Form Mot shared ! o A uoling
modifrinz data Acept Button T 4 % X updating CE
€ 2 i] y aotling
Authentication TC Authensication getimgimtodun - Text box Mot shared N W A *
seadingdats Acept Button " - ¥ adding AC
DoposingMesing g e _ ot ' i aoting
s 3 Scheduiing te postinzdate Scheduling UT ¥ ' ¥ odding date
57 Msetng Seine Megtinz Date choosing date ot - o notling
Fighes Vored loacingarte _Schecutng | R R g satngas

4.1.1.

Requirements Specification

This is the first step of the methodological approach, for which will used the
specification table. In this paper, the tables of each stage (see table 1 to 4) are shown
directly by space issues.

4.1.2.

Creation of an Application Sketch

This is the second step of the methodological approach. Only, the tables of each stage
(see table 1 to 4) are displayed, it is not possible to exhibit the other elements referent
to application sketch by space issues.

Table 2. Requirements specification of the application configuration stage.

- . N
GROUP LAYER INTERACTION LAVER | APPLICATIONLavER | “DRRLAO”
Rele St RO TASK ACTIVITY RESOURCE| s Nt Ce| IV PV CV STAGE | T w?
getinzinto data | Text box]) N ‘sotiing
Authentication Mg Authenricasion . = Mot shared N R N N o
sending data Acept Bumon x 4oz I 4 T Zering into Ad
Registering AC Registeripg AC LLugrecord Form Mot shared N AT B N notiing
sending data Arept Button 1 S 1% T sdding AC
choosingdata Coordinater UI y S 4 4 y nothing
Eliminating AC Removing AC Not shared
deletingdats Acept Button % A | r o1 1 ¥ removing AC
Consulting AC Consulting AC choosingdsta Coordinster UT | wyoe snareq v A | PR i otiing
showing data Acept Button I 4] oz i W) nothing
Modifying AC Modifying AC choosing data Formmulario Mot shared o S i W ¥ nm:ung
modifying data Acept Button I3 4] oz 1% T updating AC
filling record Form y o i o N nothing
Registering An Registering Area Not shared
Mp 1 Eeemgame senng sendingdaa Acept Button s T T " adding area
B ing Ares Remmoving Area choosingdats Coordinatar UL | Mot shared 4 S 1A y Tothing
fimina deleting data Acept Button b Yl % 1 apglication| 7 removing ares
Consilting Ares Consalfing Area ~ CCCEdRE Fomn Mot shared N Yhw 4 Y Cofimm | 4 netung
modifyingdus Acept Bumon b Alr oxox fen 1 updating area
- X . filling record Form . A 4] oz i W) nothing
Registering Subject Registering Subject Not shared
EistEing S IS SR cending dara Acept Bumon = e Aoy 1 e T adding subject
Eliminaring Subject Removing Subject 00 g & Coordinater UL o et N AT B N notiing
deleting data Arept Button 1 S 1% {1 removing subject
Consulting Subject Consultng Subject q’wmgm'a Coardinster UL Mot shared N b l *) N N e N
showing data Acept Button I S 1% 7 modifying sabject
e e choosing data Form . v 4] ox ') nothing
Modi Subject M Subject Mot shared
fying St odifying St modifyingdata Acept Button I 4] oz T % T updating subjact
filling record o v vl o {1 A \ Dothing
PRegist P Ragian zP Mot ad
gtz Bisenng sending dat Acept Bumon s ¥ vl o2y o1 % 7 adding D
MG, 13 Eliminating Removing P choosing data Coorginmertn | v 4oz i W) nothing
™ 2 deleting data Acept Button I3 4] oz 1% T remeving P
fe e choosing data Form . i S A ¥ nothing
Modifying P M, P Not shared
fring odifying modifying ditz __Acept Buion J i 3 1 g L updating P

15

Research in Computing Science 105 (2015)

Mario Anzures-Garcia, Luz A. Sdnchez-Galvez, Miguel J. Hornos, Patricia Paderewski-Rodriguez

Table 3. Requirements specification of the elaborating test stage.

- APPLICATION ADAPTATION
N
CROUP LAYER INTERACTION LAYER LAVER. TAVER
Role _5t RO TASK ACTIVITY _RESOURCE 5 Ne Ce [IV PV €V _STAGE | T w2
Proposing tests Dare. TE 100 date Mot shared ovte o M mothing
TC. . Deperment wsts postng date - v Yle z oz |z adding date
P Dates Seting test Date choosing date Vot chared i Yle o zox | = showing dam
Highest Voted Inading date : r Vlz = oz | 2 adding date
Authenfiction P Awhentication setiginio data Testbox Mot shared o le 4 A I sothing
sending data Acept Bufton r dle oz ox | % addmg AC
Consulting choosing data Coordinater UT oA e v |+ nothing
Consulfing Proposals Mot shared
Proposals e showing dats Acept Button. © y Ve 1 0« | 2 showing data
P4 choosing date Scheduling UT shared porle 1 ox | 2 showing data
Vote by test Data Choosing test Date vose date Tesxt box - ot lr 1 % | % showing data
sending vote Acept Button r orlz = oz | 2 adding voe
Proposing Number of ~ geting into date A ¥l 4 4 | < nothing
Questions posting data i Ve o rox |« adding data
J— Sotfing mmiber, the Choosing mumber A Ay 4 A | nothing
Depzru:r.n::u]'es' mast vated loading mumber rest UL shared r Ve o« |« adding data
™ 3 Consulting propesals visualizing queston 2 % |l% t % Elsboramel x showing data
Posting test questions choosing question v Yl z oz Bt |y showingdam
the most voted loading question r Ylx oz oz | z adding test
p 4 Proposine Losding proposalof choosing fils test UL i e oxle = ox | & showinzdam
Questions test test Question Subir fle r oxle = o« |z adding quession
TC, ., Conslting choosing dats Coordinater UT N |+ nothing
4 Consulfing Proposals Mot shared
P77 Proposals e showing dats Acept Button. © y Ve 1 o« | 2 showing data
Downloading Downloading st~ Choosing file J— nared r oxle = o« | 2 showing dam
Proposalsof test Exercises dowmloading fils o ot lr 1 % | v downloading file
P4 Vomby Qusscns Cromrmey | COTTEESSton shared ol =z o« |« showing data
that test weill 5 DERT voteby question Textbox ioxle 1ox | x showing data
contain sending vote Acept Burton r rlzr = % | 2 adding vote
. Postingmofice toan Writing notice Textbox . A U I | | + nothing
Posting N ! sham
N ostingNotce gimmalor GoUp posting motice Acept Button = ¢ Al 2o« |’ addingmotice
- 34
P - | ; . ine
ot Posting mmsage writing messageaze Textbox o ' | ot x | 7 showingdmm
SHnE messa Acept Button L N | L L L | i adding message
Table 4. Requirements specification of the test results stage.
. - APPLICATION ADAPTATION
GROUP LAYER INTERACTION
LAYER IAYER
Role 5t RO TASK ACTIVITY RESOURCE | 55 Nt Cc |IV PV CV STAGE | T wo
Dosting test Loading test loading file test UL shared 2 X | X X X x loading Gle
TC 3 posting Sle A I S A 3 adding score
Postiag classroom. ‘tine cla Text bax . . o \ ; <howine dat
Posting classroom wehere the tests will be e oo Test i;‘_’;d o |’ Lo ‘ * g daie
done posting clsswoom Acept Button ¥ ¥ |, ¥ 1 ‘ y addmg classroom
loading file b 3 P loading fle
P 4 Dosting Scores Loading Scores test UT ‘Lh::ed Lo |’ Lo ‘ % £
posting Sle P |.f T ‘ ¥ addingscors
SwB, ; ; \ ; "
choosiag file showiag da
1¢. %% Dowalosding Scores Downloading Scores test UL shared * K |’ LI ‘ 3 owng data
Ac 77 downloading file ¥ % |f T 1 ‘ % showing data
downloading
statistics ot 1 v | I X 1 ‘ i showing darta
e s Statistics Genereting Reports cresting report File g 3 o |r . ‘ N showing das
,TC, 4.3, IEs(R.esulis‘
ac 2 loadiag report PR | I 1z % adding report
loading file I | 3 ‘ P leading Sle
Posting Statistics Loading Smistics test UT shared + A JEOE X * £
posting file P |x t I ‘ % addingscor
su, B, Chatear Posting to - Text bax ; I ; <bowine dat
IC, ;t t0 an Individual o i = hared |" o ‘ ! e
AC Group posting messageage Acept Button PR |.f 11 ‘ % adding message
PIC, 43, R Posting notice to an writing nodice Text box 4 A |x A ‘ J nothing
aAc p PostingNodce Individual or Group shared .
posting notice Acept Buton r Yz 2 2 4 addmgaotice
Scheduling UT * ¥ | A B ‘ s showing data
. . X consultimg date, test,
SwP, ., Visnslizng or downloadimg chtes, questions mumbar o8 Schedling x |, P ‘ 5 showing dus
TC, %% und questions proposed, meeting dtes, test, chat, i shared
A€ 7 messageages, classroom, mtings, and statistics o test UL x4 | T ‘ ¢ showingdam
Coordinater UL P l; 11 { % showimgda

4.1.3. Implementation of the Collaborative Application

This is the third step of the methodological approach. Only, some user interfaces see
Figure 2 to 4) of the application are presented by space issues. As seen in Figures 2 to

Research in Computing Science 105 (2015) 16

A Software Architecture for Defining a Methodologic Approach to Develop Collaborative ...

4, user interfaces are the result of sketch derivative of the elements placed on the
specification table. Although, the application for managing the departmental tests is
developing, the proofs already have been performed.

Oy L W X - s

@ Busqueda da Area
Narmbre | Busc]

ie

00000000000000;
900000000000 00:

BEeReR

2502 0MO500CO

Fig. 2. User Interface of the subjects by area.

5 Conclusions and Future Work

This paper has presented a methodological approach based on layered software
architecture for developing Collaborative Applications. The approach is enriched with
layered software architecture, which offers the sufficient guidelines to build this kind
of applications by four layers. These separate this construction on four concerns:
group, interaction, application, and adaptation.

@ Admon O FF:F L 't\\.’ < !

03070m050000

Fig. 3. User Interface of the professor profile and chat.

17 Research in Computing Science 105 (2015)

Mario Anzures-Garcia, Luz A. Sdnchez-Galvez, Miguel J. Hornos, Patricia Paderewski-Rodriguez

- ~
@ Admon © P:RF‘L \-\U < = S
@, Busqueda de Profesor
MENU Matricula Normbre Area .

Juan Peblo T testétestcom
Martnez ¥

Sanchez

Circuitos Bectronicos @
Teoria de Contral @
@

Transmision y Corm.

Arqui de Computadoras (&)

I Teoria de Control @
Transmisién y Com. @

030208050000

Fig. 4. User Interface of the searching of professor.

The methodological approach proposes four phases: requirements specification,
sketch creation, implementation, and proof. Which is founded on specification tables
that define the elements that will have the application of an intuitive manner, even this
can be made by any inexperienced person in this domain, but with application
knowledge to carry out. By applying this methodological approach has been
implemented the collaborative application of management of departmental tests.

The future work is orientated to establish in a manner detailed this methodological
approach.

References

1. Ellis, C.A., Gibbs, S.J., Rein, G.L.: Groupware: some issues and experiences.
Communications of the ACM, Vol. 34-1, pp. 39-58 (1991)

2. Kaplan, S.M., Carroll, A.M.: Supporting collaborative processes with
conversation builder. Computer Communications, 15(8), pp. 489-501 (1992)

3. Fitzpatrick, G., Kaplan, S.M., Tolone, J.: Work, locales and distributed social
worlds. In: Proceedings ECSCW, pp. 1-16 (1995)

4. Fitzpatrick, G., Kaplan, S.M., Mansfield, T.: Physical spaces, virtual places and
social worlds: A study of work in the virtual. In: Proceedings CSCW, pp. 334-343
(1996)

5. Beaudouin-Lafon, M.: Beyond the workstation: Mediaspaces and augmented
reality. In: Proceedings of the Conference on People and computers 1X, 9, pp. 9—
18 (1994)

6. Rajan, S., Venkat, R.P., Vin, H.M.: A formal basis for structured multimedia
collaborations. In: Proceedings of the 2nd IEEE International Conference on
Multimedia Computing and Systems, pp. 194-201 (1995)

Research in Computing Science 105 (2015) 18

A Software Architecture for Defining a Methodologic Approach to Develop Collaborative ...

7. Venkat R.P., Vin, H.M.: Multimedia conferencing as a universal paradigm for
collaboration. In: L. Kjelldahl (ed.), Multimedia: Systems, Interaction and
Application, 1st Eurographics Workshop, Springer-Verlag, pp. 173-185 (1991)

8. Edwards, W.K.: Session management for collaborative applications. In:
Proceedings CSCW, pp. 323-330 (1994)

9. Garcia, P., Gémez, A.: ANTS framework for cooperative work environments.
IEEE Computer Society Press, 36(3), 56-62 (2003)

10. Anzures-Garcia, M., Sanchez-Galvez, L.A., Hornos, M., Paderewski-Rodriguez,
P.: Ontology-Based Modelling of Session Management Policies for Groupware
Applications. Lecture Notes on Computer Science, Vol. 4739, pp. 57-64,
Springer-Verlag, (2007)

11.Roseman, M., Greenberg, S.: Building Real-time Groupware with GroupKit, a
Groupware ToolKit. ACM Trans. Computer-Human Interaction, Vol. 3, 66-106
(1996)

12. Fonseca, B., Carrapatoso, E.: SAGA: A Web Services Architecture for Groupware
Applications. In: Proc. of the CRIWG, LNCS 4154, Springer-Verlag, pp. 246—
261, (2006)

13.Graham, T.C.N., Urnes, T.: Integrating Support for Temporal Media in to an
Architecture for Graphical User Interfaces. In: Proc. of the International
Conference on Software Engineering (ICSE'97), ACM Press, Boston, USA, pp.
172-182 (1997)

14. Laurillau, Y., Nigay, L.: Clover Architecture for Groupware. In: Proc. of the ACM
Conference on CSCW, New Orleans, Louisiana, USA, pp. 236-245 (2002)

15. Gea, M., Gutierrez, F.L., Garrido, J.L., Canas, J.J.. AMENITIES: Metodologia de
Modelado de Sistemas Cooperativos. In: COLINE02, Workshop de Investigaci6n
sobre nuevos paradigmas de interaccién en entornos colaborativos aplicados a la
gestion y difusion del Patrimonio cultural, Granada, Spain (2002)

16. Molina, A.l., Redondo, M.A., Ortega, M., Hope, U.: CIAM: A methodology for
the development of groupware user interfaces. Journal of Universal Computer
Science (2007)

17.Penichet, V.M.R., Lozano, M.D., Gallud. J.A.: An Ontology to Model
Collaborative Organizational Structures in CSCW Systems. In: Engineering the
User Interface, Springer, pp. 127-139 (2008)

18. Garlan, D., Shaw, M.: An introduction to software architecture. Advances in
Software Engineering and Knowledge Engineering, 1, pp. 1-39 (1994)

19.Van Welie, M., van der Veer, G.C., Eliéns, A.: An Ontology for Task World
Models, Design, Specification and Verification of Interactive System. Springer
Computer Science, 57—70 (1998)

20. Kuutti K.: The concept of activity as a basic unit of analysis for CSCW research.
In: Proceedings of the Second European Conference on CSCW (1991)

21. Ellis, C., Wainer, J.A.: Conceptual model of groupware. In: Proceedings of the
1994 ACM Conference on CSCW, pp. 79-88 (1994)

22.Hollan, J., Hutchins, E., Kirsh, D.: Distributed cognition: toward a new foundation
for human-computer interaction research. ACM Transactions on Computer-
Human Interaction (TOCHI) Special issue on HCI in the new millennium, Vol. 7-
2 (2000)

19 Research in Computing Science 105 (2015)

Mario Anzures-Garcia, Luz A. Sdnchez-Galvez, Miguel J. Hornos, Patricia Paderewski-Rodriguez

23.Fernandez-Lo6pez, M., Gomez-Pérez, A., Juristo, N.: Methontology: From
Ontological Art Towards Ontological Engineering. In: Spring Symposium on
Ontological Engineering of AAAI, Stanford University, California, pp. 33-40
(1997)

24. Abrahamsson, P., Salo, O., Ronkainen, J.: Agile software development methods:
Review and analysis. VTT Electronics (2002)

Research in Computing Science 105 (2015) 20

