
A Software Architecture for Defining a Methodological

Approach to Develop Collaborative Applications

Mario Anzures-García1, Luz A. Sánchez-Gálvez1, Miguel J. Hornos2,

Patricia Paderewski-Rodríguez2

1 Benemérita Universidad Autónoma de Puebla,

Facultad de Ciencias de la Computacion, Puebla,

Mexico

2 Universidad de Granada, Departamento de Lenguajes y Sistemas Informáticos,

E.T.S.I. Informática y de Telecomunicación, Granada,

Spain

{mario.anzures, sanchez.galvez}@correo.buap.mx, {mhornos,patricia}@ugr.es

Abstract. This paper presents a software architecture-based methodological

approach to develop collaborative applications. Today, the use of collaborative

applications has spread to various domains, as they facilitate communication,

collaboration, and coordination between several users. These applications

require mechanisms to support and model communication activities and

processing of information, vital in the dynamic nature to the group. In this

paper, the use of a software architecture is recommended to develop

collaborative applications. This architecture for specifying the structure and

behavior through the application, providing a shared meeting space to simplify

and agile the group work. Thus, it is possible to support dynamic group

structure. In addition, specification tables are proposed to simplify the

development of this kind of applications; since the developers to complete the

table are analyzing the necessary elements required to build an application, so

performing requirements analysis, design, and displayed as would the final

application. A case study to validate the software architecture is proposed.

Keywords: Methodological Approach, Software Architecture, Collaborative

Applications, Specification Tables, Group Work.

1 Introduction

The use of a software architecture allows us to have a global perspective of the

software applications, since it knows its components what do them and how are

9 Research in Computing Science 105 (2015)pp. 9–20; rec. 2015-08-04; acc. 2015-10-12

related, as well as, the environment in which interacts these. This knowledge leads us

to identify and analyze the necessary components of the application to develop. In this

way, it is possible to get any application requirements. Therefore, it can be handled to

the development of collaborative applications, which provides a shared interface that

allows a group of people to achieve a common goal. Consequently, in this paper, a

collaborative application for managing the departmental tests is developed as a case

study to implement a software architecture.

The necessary elements to create a collaborative application are specified by this

model in four layers; which provide four essentials aspects: the group, the cornerstone

of the group work; the interaction to control and manage the shared objects to the

application and between different users of the group: the application presents several

views to visualize the interaction carried out by the group in the stages that

application contains; and the adaptation to adjust the application with respect to the

produced changes through group interaction.

In order to facilitate the development of the collaborative applications, this model

supplies specification tables, so it is possible to define which elements will have the

application of an intuitive manner, even this can be made by any inexperienced

person in this domain. Thus, this model can be used to specify requirements, to

outline the design and implementation.

These requirements identified in the table inform how the application elements will

be distributed and executed in each involved stage in this. In this paper, the table

elements are the base of the requirements analysis, since each they are part of the

application for managing the departmental tests, and therefore, these determine the

design and implementation of the same. Thus, the software architecture can be used

how a methodological approach to develop this type of applications. This approach is

made up by four parts: requirements specification, sketch creation, code production,

and application test.

The rest of the paper is organized as follows: Section 2 describes briefly the

collaborative applications; Section 3 explains the used software architecture, and the

derived specification table of the same; Section 4 presents the case study, in which

software architecture is implemented using a methodological approach for building a

collaborative application for managing the departmental tests. Section 5 outlines the

conclusions and future work.

2 Collaborative Applications

A collaborative application is a computer-based application that supports a group of

people to achieve a common goal and provides services to support the work of users

through a shared environment interface [1]. Collaborative applications provide the

shared workspace, where they will perform group work; therefore, it must provide the

communication, collaboration, and coordination of the users. Different terms to

denote the shared workspace have been used, such as conversations [2], local [3],

places [4], spaces [5], conferences [6, 7], and meetings [8, 9]. In general, all these

terms denote a group of individuals, geographically distributed, which share a

common interest to perform common tasks. In this paper the term session to denote

the shared workspace is used.

10

Mario Anzures-García, Luz A. Sánchez-Gálvez, Miguel J. Hornos, Patricia Paderewski-Rodríguez

Research in Computing Science 105 (2015)

Collaborative applications provide a mechanism to control and manage sessions,

called session management, which allows you to define sessions via a user interface,

through which users establish a connection; that is, users to join, leave, invite

someone to, and exclude someone from a session. Generally, these mechanisms only

specify how the group work will be organized. However, it is important to support

and define different styles for group work. Thus, if the style imposed by the system is

accepted or unsuitable for group work, you should be changed to one that meets your

needs. For this reason, this model uses an ontology to model the session management

policies [10] that allows to support different styles of group work.

A variety of tools (such as Groupkit [11], ANTS [9], and SAGA [12]),

architectures (e.g., Clock [13], and Clover [14]), and methodologies (AMENITIES

[15], ClAM [16], and TOUCHE [17]), which allows to develop collaborative

applications. However, these do not specify the steps to develop this kind of

applications, and they are not flexible enough to adjust to the group changing needs.

3 Software Architecture

Software architecture is defined as the fundamental organization of a system,

embodied in its components, their relationships to each other, to the environment, and

the principles governing its design and evolution [18]. A variety of architectural

styles, can be identified in a software architecture. A style is each recognized generic

pattern in relation to systems group; of another manner, a style describes and provides

the basic property of an architecture, as well as; it establishes the limits for its

evolution. One example of architectural style is a layered style, which is organized

hierarchically, and it is characterized by a sense of development "bottom-up", so that

lower layers provide resources that are used by upper layers, according to their

particular needs. A layer is a software technique for structuring the software

architecture that can be used to reflect different abstraction levels in the architecture.

A layered style is ideal for supporting the development of collaborative

applications, since it leads to break down a complex problem into a set of smaller

problems and simpler to solve. Therefore, in this paper a layered software architecture

will be used to develop the distributed components of a management system for

departmental tests.

The layered software architecture (see Figure 1) has been derived from performed

analysis about: Task Analysis [19], Activity Theory [20], Coordination Theory [21],

Conceptual Model [22]; and Distributed Cognition [23]. These related works supply a

set of ideas and concepts to manage the group interaction of the collaborative

applications. Fundamentally, these studies consider four principal aspects in a

collaborative application: group, their interaction, the application itself, and its

adaptation. Therefore, the software architecture contains four layers: Group Layer,

Interaction Layer, Application Layer, and Adaptation Layer.

The first aspect is a key to the performance of the work carried out to achieve the

common goal. The group must present an organizational structure to support the

division of labour, which indicate the actions that the group members (users) should

make in relation to the established roles for each of them. This organization must be

governed by a police, which defines the roles (Role) that users can play. These roles

11

A Software Architecture for Defining a Methodologic Approach to Develop Collaborative ...

Research in Computing Science 105 (2015)

establish the set of rights/obligations (R/O) and status (St) of the user; whom can

execute tasks (T), which are comprised of Activities (A) that use the prevailing shared

resources (R).

The second aspect is elemental to provide the communication, coordination, and

collaboration between the users. Accordingly, it must establish the session (Ss), which

is the shared workspace where the interaction is carried out. Furthermore, it must

make available for the awareness group and group memory through a notification (Nt)

mechanism, which informs users of and registers every change in the shared resources

used in each activity. Finally, it must ensure the consistency of the resources being

shared, facilitating the manipulation of the users’ permissions, which are granted, in

accordance with established organizational structure, and a concurrency (Cc)

mechanism.

GROUP

LAYER

Notification

 INTERACTION

LAYER

APPLICATION

LAYER

ADAPTATION

LAYER

Detection Agreement

Adaptation Stage

Adaptation

Flow

Reparation

Pre-Adaptation
Stage

Vote

Tool

Activity

Concurrence

Resource

Task

Group

Organizational

Structure

Role

Phase

Policy

Status

User

Session

Participant

View
Information

View

Context

View

Rigth/

Obligation

Fig. 1. Layered software architecture for building collaborative applications.

The third aspect allows us to show the generated information and interaction in the

collaborative application. This is presented in stages (they are defined as each of the

collaboration moments [22]) on views (which are user interfaces). Three views are

considered in this model: Information View (IV) that displays the user information,

Participant View (PV), exhibiting the changes in shared resources and, therefore,

provide group awareness, and Context View (CV) shows the group memory, i.e., the

change history of shared resources.

In the fourth aspect, the views are adjusted to produced changes by interaction

between users and of these with the own application. For doing this adaptation, a

detection process monitors the session, determining whether an activity requires to

carry out the adaptation. Only if it is an adaptable process, in a non-hierarchical

organizational style, an agreement process is executed, and a vote tool is used for

reaching a consensus on whether an adaptation process should be performed. When

an adaptation or adaptive process should be executed, an adaptation flow process and

one reparation —which returns each component to their previous state and notifies

users that adaptation cannot take place— will be executed.

12

Mario Anzures-García, Luz A. Sánchez-Gálvez, Miguel J. Hornos, Patricia Paderewski-Rodríguez

Research in Computing Science 105 (2015)

The software architecture is mainly focused on the design and implementation of

software structures, abstractly defining components that perform a task, their

interfaces, and communication between them, in order to meet adequately functional

and non-functional requirements of an application. For this reason, this software

architecture facilitates the requirements' specification, which will do by a table; which

is based principally on the architectural model proposed here, MetaOntology [27], and

agile methodologies [28].

Specification Table allows us to: collect all the requirements and agile the design

of collaborative applications; reduce the learning curve in the process of creating of

this kind of applications, since it is only necessary to complete the table with elements

that are intuitive even for any inexperienced person in the domain CSCW; establish

how will be access control to application collaborative since these tables are classified

by stages, delineating the roles that can participate in each of visualize the

collaborative application, since it is possible to define which elements will have the

application user interfaces.

The table (see figure 2) contains the elements' specification of the Group Layer

(except the organizational structure of the group, policy and user); Interaction Layer,

Application Layer. With respect to Adaptation Layer, two columns only are set, one

to indicate whether "there or not adaptation” (TA), and another to describe "What is

this?” (W?).

4 Case Study

In the Autonomous University of Puebla (BUAP) have sought different ways to

improve or increase the quality of student learning, one of these mechanisms is the

realization of departmental tests. Which aim to homogenize the teaching of a subject,

i.e., that all teachers will cover the same percentage of the academic program. The

Faculty of Computer Science carries out departmental tests in different areas of

knowledge; however, a departmental test requires a shared workspace to that involved

teachers perform group work. For this reason, this paper proposes the development of

a collaborative application for managing departmental tests using a software

architecture. This application is intended to minimize the time and effort that engaged

teachers in the enforcement of departmental tests. Several actors involved in this type

of tests are considered: Manager (Mg —he/she is responsible to configure the

application, establishing who plays the other four roles, existing areas and what

subjects are part of these—); Area Coordinator (AC —he/she registers to EC, and

schedules the professors' meetings related with the same subject—); Test Coordinator

(TC —he/she organizes the completion of each test, requesting and agreeing the tests

number to make, dates and questions of these; then he/she posting the test and the

classroom where each Professor will apply it—); Professor (P —he/she proposes and

vote date in that the test will be performed, as well as the exercises that it will

contain—), and Student (Su — he/she consults date and classroom where the test will

make, as well as its scores of each subject—). In general, the five roles must register

to join at the session, which is provided by application user interfaces. The

collaborative application for managing the departmental tests presents four stages:

Application Configuration, Test Preparation, Test Elaborating, and Test Results.

13

A Software Architecture for Defining a Methodologic Approach to Develop Collaborative ...

Research in Computing Science 105 (2015)

Once it has been explained the case study, then it will prove a software

architecture-based methodological approach to develop collaborative applications.

4.1. A Software Architecture-based Methodological Approach

A methodological approach is proposed to simplify and agile the development of a

collaborative application. This approach derives of the software architecture

mentioned above, and consists in the following steps:

 To elaborate of the requirements specification.

- Specifying the elements of the Group Layer, for this, the ontological

model of the session management policies can be applied. However, for

some developers complete an ontology is difficult. For this reason, it is

convenient to use a specification table, in which these elements can be

laid.

- Identifying the elements of the Interaction Layer, which must be listed in

the specification table.

- Recognizing the elements of the Application Layer, which must be

registered in the specification table.

- Determining the elements of the Adaptation Layer, which must be

enumerated in the specification table.

- Generate a unique specification table containing the elements

corresponding to the four layers of software architecture proposed here.

 To create a sketch of how the application would display.

- Organizing of the specification table by stages.

- Determining the user’s access control according to the roles that can

participate in each stage.

- Establishing the elements of each user interface, considering the

resources and users interact in it.

- Defining what and how data must be stored.

- Carrying out a schema of the user interfaces and stored data.

 To implement the collaborative application.

- Making the schema where will be data stored.

- Developing the necessary user interfaces.

- Building each of the web services required to implement the collaborative

application.

- Making the composition of these web services.

 To test of application.

- Performing the necessary proofs to deliver the required application.

14

Mario Anzures-García, Luz A. Sánchez-Gálvez, Miguel J. Hornos, Patricia Paderewski-Rodríguez

Research in Computing Science 105 (2015)

Table 1. Requirements specification of the test preparation stage.

4.1.1. Requirements Specification

This is the first step of the methodological approach, for which will used the

specification table. In this paper, the tables of each stage (see table 1 to 4) are shown

directly by space issues.

4.1.2. Creation of an Application Sketch

This is the second step of the methodological approach. Only, the tables of each stage

(see table 1 to 4) are displayed, it is not possible to exhibit the other elements referent

to application sketch by space issues.

Table 2. Requirements specification of the application configuration stage.

15

A Software Architecture for Defining a Methodologic Approach to Develop Collaborative ...

Research in Computing Science 105 (2015)

Table 3. Requirements specification of the elaborating test stage.

Table 4. Requirements specification of the test results stage.

4.1.3. Implementation of the Collaborative Application

This is the third step of the methodological approach. Only, some user interfaces see

Figure 2 to 4) of the application are presented by space issues. As seen in Figures 2 to

16

Mario Anzures-García, Luz A. Sánchez-Gálvez, Miguel J. Hornos, Patricia Paderewski-Rodríguez

Research in Computing Science 105 (2015)

4, user interfaces are the result of sketch derivative of the elements placed on the

specification table. Although, the application for managing the departmental tests is

developing, the proofs already have been performed.

Fig. 2. User Interface of the subjects by area.

5 Conclusions and Future Work

This paper has presented a methodological approach based on layered software

architecture for developing Collaborative Applications. The approach is enriched with

layered software architecture, which offers the sufficient guidelines to build this kind

of applications by four layers. These separate this construction on four concerns:

group, interaction, application, and adaptation.

Fig. 3. User Interface of the professor profile and chat.

17

A Software Architecture for Defining a Methodologic Approach to Develop Collaborative ...

Research in Computing Science 105 (2015)

Fig. 4. User Interface of the searching of professor.

The methodological approach proposes four phases: requirements specification,

sketch creation, implementation, and proof. Which is founded on specification tables

that define the elements that will have the application of an intuitive manner, even this

can be made by any inexperienced person in this domain, but with application

knowledge to carry out. By applying this methodological approach has been

implemented the collaborative application of management of departmental tests.

The future work is orientated to establish in a manner detailed this methodological

approach.

References

1. Ellis, C.A., Gibbs, S.J., Rein, G.L.: Groupware: some issues and experiences.

Communications of the ACM, Vol. 34-1, pp. 39–58 (1991)

2. Kaplan, S.M., Carroll, A.M.: Supporting collaborative processes with

conversation builder. Computer Communications, 15(8), pp. 489–501 (1992)

3. Fitzpatrick, G., Kaplan, S.M., Tolone, J.: Work, locales and distributed social

worlds. In: Proceedings ECSCW, pp. 1–16 (1995)

4. Fitzpatrick, G., Kaplan, S.M., Mansfield, T.: Physical spaces, virtual places and

social worlds: A study of work in the virtual. In: Proceedings CSCW, pp. 334–343

(1996)

5. Beaudouin-Lafon, M.: Beyond the workstation: Mediaspaces and augmented

reality. In: Proceedings of the Conference on People and computers IX, 9, pp. 9–

18 (1994)

6. Rajan, S., Venkat, R.P., Vin, H.M.: A formal basis for structured multimedia

collaborations. In: Proceedings of the 2nd IEEE International Conference on

Multimedia Computing and Systems, pp. 194–201 (1995)

18

Mario Anzures-García, Luz A. Sánchez-Gálvez, Miguel J. Hornos, Patricia Paderewski-Rodríguez

Research in Computing Science 105 (2015)

7. Venkat R.P., Vin, H.M.: Multimedia conferencing as a universal paradigm for

collaboration. In: L. Kjelldahl (ed.), Multimedia: Systems, Interaction and

Application, 1st Eurographics Workshop, Springer-Verlag, pp. 173–185 (1991)

8. Edwards, W.K.: Session management for collaborative applications. In:

Proceedings CSCW, pp. 323–330 (1994)

9. García, P., Gómez, A.: ANTS framework for cooperative work environments.

IEEE Computer Society Press, 36(3), 56–62 (2003)

10. Anzures-García, M., Sánchez-Gálvez, L.A., Hornos, M., Paderewski-Rodríguez,

P.: Ontology-Based Modelling of Session Management Policies for Groupware

Applications. Lecture Notes on Computer Science, Vol. 4739, pp. 57–64,

Springer-Verlag, (2007)

11. Roseman, M., Greenberg, S.: Building Real-time Groupware with GroupKit, a

Groupware ToolKit. ACM Trans. Computer-Human Interaction, Vol. 3, 66–106

(1996)

12. Fonseca, B., Carrapatoso, E.: SAGA: A Web Services Architecture for Groupware

Applications. In: Proc. of the CRIWG, LNCS 4154, Springer-Verlag, pp. 246–

261, (2006)

13. Graham, T.C.N., Urnes, T.: Integrating Support for Temporal Media in to an

Architecture for Graphical User Interfaces. In: Proc. of the International

Conference on Software Engineering (ICSE'97), ACM Press, Boston, USA, pp.

172–182 (1997)

14. Laurillau, Y., Nigay, L.: Clover Architecture for Groupware. In: Proc. of the ACM

Conference on CSCW, New Orleans, Louisiana, USA, pp. 236–245 (2002)

15. Gea, M., Gutierrez, F.L., Garrido, J.L., Canas, J.J.: AMENITIES: Metodología de

Modelado de Sistemas Cooperativos. In: COLINE02, Workshop de Investigaci6n

sobre nuevos paradigmas de interacción en entornos colaborativos aplicados a la

gestión y difusión del Patrimonio cultural, Granada, Spain (2002)

16. Molina, A.I., Redondo, M.A., Ortega, M., Hope, U.: ClAM: A methodology for

the development of groupware user interfaces. Journal of Universal Computer

Science (2007)

17. Penichet, V.M.R., Lozano, M.D., Gallud. J.A.: An Ontology to Model

Collaborative Organizational Structures in CSCW Systems. In: Engineering the

User Interface, Springer, pp. 127–139 (2008)

18. Garlan, D., Shaw, M.: An introduction to software architecture. Advances in

Software Engineering and Knowledge Engineering, 1, pp. 1–39 (1994)

19. Van Welie, M., van der Veer, G.C., Eliëns, A.: An Ontology for Task World

Models, Design, Specification and Verification of Interactive System. Springer

Computer Science, 57–70 (1998)

20. Kuutti K.: The concept of activity as a basic unit of analysis for CSCW research.

In: Proceedings of the Second European Conference on CSCW (1991)

21. Ellis, C., Wainer, J.A.: Conceptual model of groupware. In: Proceedings of the

1994 ACM Conference on CSCW, pp. 79–88 (1994)

22. Hollan, J., Hutchins, E., Kirsh, D.: Distributed cognition: toward a new foundation

for human-computer interaction research. ACM Transactions on Computer-

Human Interaction (TOCHI) Special issue on HCI in the new millennium, Vol. 7-

2 (2000)

19

A Software Architecture for Defining a Methodologic Approach to Develop Collaborative ...

Research in Computing Science 105 (2015)

23. Fernández-López, M., Gómez-Pérez, A., Juristo, N.: Methontology: From

Ontological Art Towards Ontological Engineering. In: Spring Symposium on

Ontological Engineering of AAAI, Stanford University, California, pp. 33–40

(1997)

24. Abrahamsson, P., Salo, O., Ronkainen, J.: Agile software development methods:

Review and analysis. VTT Electronics (2002)

20

Mario Anzures-García, Luz A. Sánchez-Gálvez, Miguel J. Hornos, Patricia Paderewski-Rodríguez

Research in Computing Science 105 (2015)

